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Abstract. The so called dual parameterization method for quadratic semi-infinite programming
(SIP) problems is developed recently. A dual parameterization algorithm is also proposed for
numerical solution of such problems. In this paper, we present and improved adaptive algorithm
for quadratic SIP problems with positive definite objective and multiple linear infinite constraints.
In each iteration of the new algorithm, only a quadratic programming problem with a limited
dimension and a limited number of constraints is required to be solved. Furthermore, convergence
result is given. The efficiency of the new algorithm is shown by solving a number of numerical
examples.
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1. Introduction

Consider the following quadratic semi-infinite program:
Problem (P):

min
x

f �x�= 1
2
xTQx+pTx (1)

s.t. A�y�x�b�y� for all y∈Y � (2)

where x=�x1�x2��xn�
T ∈Rn is the decision vector, p=�p1�p2��pn�

T ∈Rn is
a constant vector, Q∈Rn×n is a positive definite matrix, Y is a compact subset
of Rs, and A�y�� y→Rm×n and b�y�� y→Rm are continuously differentiable
functions defined on Y ⊂Rs. The vector inequalities (2) are to be understood as
component-wise inequalities.
Let g�y�x�=A�y�x−b�y�. We will sometimes write the constraint as g�y�x��

0 for convenience.
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The Dorn’s dual of (P) can be formulated in the following form:
Problem (DP):

min
x��

1
2
xTQx+

∫
Y
b�y�Td��y�� (3)

s.t. Qx+p+
∫
Y
A�y�Td��y�=0� (4)

�∈M+�Y �� x∈Rn� (5)

where M+�Y � is the set of nonnegative bounded regular Borel measures on Y .
Many papers dealt with numerical methods for solving (P). The so-called dual

parameterization method [7] and the well-known cutting plane method are two
important solution techniques related to this paper. For other methods, see [1]–
[5]. The two methods mentioned above are different in concept, and in that the
former works on the dual problem and the later deals with the primal problem.
Furthermore, the dual parameterization methods is capable of finding the exact
solution while the cutting plane method is designed for approximations. But, on
the other hand, the two methods have similarities in some technical aspect.
The dual parameterization method is to parameterize the measure � in the dual

problem (DP) to transform into an equivalent finite dimensional nonlinear pro-
gramming problem. It is shown in [7] that a global solution of this parameterized
dual problem provides a solution to the original problem (P). Method for global
solution of the parameterized dual have been developed in [7]. The method com-
bines an approximation method and a local search. An adaptive method was given
recently in [9] for finding an approximate solution.
On the other hand, the cutting plane method solves a sequence of regular convex

programs in a systematic way. This sequence of convex programs is obtained by
a discretization scheme. To be more precise, in the kth iteration, the problem is
solved by replacing the index set Y with a finite subset Yk. If all the constraints
of (DP) are satisfied, up to given tolerance, at the current solution, the algorithm
stops and the current solution is taken as the primal solution. Otherwise, find an
index point in Y where the constraints violate the most. Add this point to Yk to
form Yk+1 and start a new iteration. It is shown that the corresponding solution
sequence converges to an optimal solution of problem (P). Wu and Fang [11]
developed a relaxed cutting plane method where the set Yk+1 is constructed by
adding to Yk a new point at which the constraints are violated but not necessarily
violate the most.
The adaptive scheme in the dual parameterization algorithm developed in [9]

differs from that of the cutting algorithm in forming the set Yk+1. In [9], Yk+1 is
constructed from Yk by adding all violated index points of a refined set of grid
points to Yk while dropping all unnecessary point from Yk. The shortcoming of
this scheme is that the number of points in Yk may not be bounded as k increase.
In this paper, we construct Yk+1 from Yk the same way as in [9] except that

we add to Yk only one of the most violated points in a refined set of grid points.



QUADRATIC SEMI-INFINITE PROGRAMMING ON DUAL PARAMETRIZATION 403

We will show that for each k, the number of points in Yk is limited by n+2
where n is the dimension of problem (P). We will also present convergence
result under the improved adaptive scheme. Applications and numerical examples
demonstrating the effectiveness of the new algorithm are given.

2. Dual Parameterization

For completeness, we present in this section the main results in the dual parame-
terization technique. We assume the following constraint qualification throughout
the paper.

ASSUMPTION 1 (Slater condition). There is an x0∈Rn such that

A�y�x0−b�y�<0 for all y∈Y  (6)

We denote by C�Y � the Banach space of all continuous real functions on Y
equipped with the supremum norm, and by M�Y � the space of all signed finite
regular Borel measures on Y . It is known thatM�Y � is the dual space of C�Y �. Let
V be the cone of C�Y � consisting of all the nonnegative functions in C�Y �. The
cone in M�Y � associated with V , denoted by V ′, consists of all the nonnegative
elements (nonnegative as measure) of M�Y �. Thus, �∈V ′ if and only if ��u��0
for all u∈V . We will use the same symbol ‘�’ to denote the partial orders in both
C�Y � and M�Y � induced by V and V ′, respectively. To be more specific, if u and
v are two elements in C�Y � (respectively, M�Y ��, we write u�v (equivalently,
v�u) if and only if u−v∈V (respectively, V ′).
The main result in the development of the dual parameterization technique is

based on the following three results, including the KKT optimality conditions,
the Carathéodory’s lemma and a classical result in mathematical programming
[10]. The first two results are standard and the third one is given in [7]. We state
them in the following without proof.

LEMMA 2.1 (KKT conditions). Let the Slater constraint qualification be satis-
fied. The minimum of problem (P) is achieved at x∗ ∈Rn if and only if x∗ is
feasible and there exists a �∗ ∈M�Y � such that

Qx∗+p+
∫
Y
A�y�Td�∗�y�=0�

∫
Y
�A�y�Tx∗−b�y��d�∗�y�=0� (7)

�∗
�0
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LEMMA 2.2 (Carathéodory). Let X be a subset of Rn. If x∈coneX, i.e., x is a
nonnegative linear combination of points in X, then there exist n numbers �i�0
such that

x=
n∑

i=1
�ix

i

for some xi∈X, i=1�2��n, i.e., x can be represented as a nonnegative linear
combination of at most n points of X.

LEMMA 2.3. Let Assumptions 1 be satisfied, and assume that the minimum of
problem (P) is achieved at x∗ ∈Rn. Then �∗ is a multiplier satisfying the KKT
conditions (7) if and only if �x∗��∗� is a solutions to the dual problem (DP).

The dual parameterization method is based on the following result.

THEOREM 2.1. Let Assumption 1 be satisfied, and assume that the minimum of
problem (P) is achieved at x∗ ∈Rn. Then the solution set of the dual problem (DP)
contains a solution pair �x∗��∗� of which the measure �∗ has a finite support of
no more than n points.

The importance of Theorem 2.1 lies in the fact that it allows us to reduce
problem (DP) to a finite dimensional problem. In order to solve the primal problem
(P), we need only to find a solution pair �x∗��∗� of problem (DP). From Theorem
2.1, we can restrict out search for �∗ to those nonnegative measures having a finite
support of no more that n supporting points. Such a measure � is characterized
by its k supporting points yi∈Y , i=1�2��k, and the corresponding measures
�i=�� yi!�>0, i=1�2��k, at each point.
If we restrict the measure � in problem (DP) to the those of finite support of no

more than k supporting points which are collectively denoted by Z, then problem
(DP) is reduced to the following problem (PDPk).
Problem �PDPk�:

min
x���$

1
2
xTQx+

k∑
i=1

b�yi�
T�i

s.t. Qx+p+
k∑

i=1
A�yi�

T�i=0

�i�0� i=1�2��k�
yi∈Y � i=1�2��k

(8)

where �=��1��2���k� is in the space Rm×k and $=�y1�y2��yk� is in the
space Rs×k.
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Problem �PDPk� is called the parameterized dual of problem (P) ([8]) with
parameterization number k. From the above discussions, we see that once a global
solution �x∗��∗�$∗� of problem �PDPk� is obtained, then x∗ must be the solution
of problem (P) if k is suitably large. Here, suitably large means that k is no less
than an integer k∗, the minimum parameterization number [8], which is no more
than n but not known exactly before solving the problem. Thus, in order to solve
problem (P), we need only to deal with problem �PDPk�.
For any finite index set Z= y1�y2��yk!⊂Y , we define a problem �PDP�Z��

by
Problem �PDP�Z��:

min
x��

1
2
xTQx+

k∑
j=1

b�yi�
T�j

s.t. Qx+p+
k∑

j=1
A�yj�

T�j =0

�j �0� j=1�2��k�

(9)

where � is defined as in problem (PDPk).
In the next section, we present an improved numerical algorithm for solving

problem (P).

3. Algorithm

From the previous section, in order to solve problem (P), we need to solve a
finite dimensional nonlinear programming problem, namely, problem (PDPk), for
a global solution. In [8] and [9], algorithms are proposed to compute a global
solution of problem (PDPk). The smallest number of supporting points, k, in the
optimal measures is theoretically no more than n. However, in the search for
an optimal pair (x∗��∗), we technically allow k to be larger than n, which only
means that we look for an optimal �∗ in a larger set of measures. The algorithm
combines an adaptive scheme for an approximate solution and a local search. The
following is an improvement of the adaptive algorithm developed in [9].
For each i�1, let Yi be a given subset of Y satisfying

d�Yi�Y �
∧=max

z∈Y
min
y∈Yi

�z−y�→0 (10)

For any y∈Y and x∈Rn, we define

gmax�y�x�
∧=max
1�j�m

gj�y�x� (11)

where gj�y�x� is the jth entry of the vector g�y�x�.
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Now we propose the following algorithm:

Algorithm 1

1. Choose an arbitrary x0∈Rn, a small number (>0, a large integer N , and a
sequence of parameterization sets

Yi= yi
j � j=1�2��ki!� i=0�1�

satisfying (10).
2. Let E0=+. Set i=0.
3. Set i= i+1. Find zi∈Yi such that

gmax�zi�x
i−1�=max

y∈Yi
gmax�y�x

i−1�

If gmax�zi�x
i−1�<(,

Zi=Ei−1.

If i�N ,
goto Step 6.

Else,
set �xi��i�=�xi−1��i−1), Ei=Ei−1, repeat Step 3.

End
Else

Zi= zi!∪Ei−1

End

4. Solve problem (PDP(Zi)) to obtain a solution (x
i��i).

5. Choose a set Ei⊂Zi with no more than n+1 points such that the solution of
problem (PDP(Ei)) is in the form (xi��̃i). Go to step 3.

6. Suppose Zi has k points z1�z2��zk where zj corresponds to the jth entry
of �i. Find a local minimum (x∗�,∗�$∗) for problem (PDPk), starting from
(xi��i�$i), where xi and �i are from previously defined and $i=�z1�z2��zk�
is the k tuple formed by the points in Zi. Then x∗ is taken as the solution for
problem (P).

The purpose of introducing the integer N is to prevent the algorithm from termi-
nating prematurely. For example, if the iteration number i is small, the subset Yi+1
may be relatively sparse in Y and it may happen that the approximate solution xi

as part of the solution (xi��i) of problem (PDP(Zi)) satisfies all the constraints
corresponding to index points in Yi+1. Without introducing the integer N , the
algorithm would terminate the iteration at this stage even if gmax�y�x

i�>- at
some points y∈Y \Yi+1 and goes to the final local search. In this case, x

i may not
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be close enough to the primal solution x∗ and the subsequent local search in Step
6 does not find a global solution for problem (PDPk).
An obvious advantage of the above algorithm is that we need only to solve a

quadratic programming of dimension not exceeding n+�n+2�m with n linear
equality constraints, where n is the dimension of the primal problem and m is
the number of its infinite constraints, i.e., the number of rows in the matrix
function A�y�. The reason is that Zi contains no more than n+2 points for each
i. Furthermore, at the final local search, we need only to find a local solution of a
non-linear programming problem of dimension no more than n+�n+2��s+m�
is solved, where s is the dimension of the index space.

LEMMA 3.1. Step 5 of the above algorithm is numerically feasible.
Proof. Let Zi= y1�y2��yk!. Then problem (PDP(Zi)) is in the form of (9).

Let (xi��i) be the solution to this problem obtained in the ith iteration. Consider
the following linear program:
Problem �LPi�:

min���

n+1∑
j=1

�j

s.t.
k∑

j=1
b�yj�

T�j+�n+1=vi

k∑
j=1

A�yj�
T�j+ �̂=ci

��0���0

where

vi=
k∑

j=1
b�yj�

T�i
j�

ci=−Qxi−p�

�=��i
1��

i
2���

i
k��

�̂= /�1��2���n0
T �

and

�= /�̂T ��n+10
T 

In problem �LPi�, which is the phase 1 of a linear program, �j , j=1�2��n+1
are known as artificial variables in the simplex theory of linear programming.
Using the simplex method, we obtain a basic feasible solution ��̄i��̄i� where �̄i is
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a zero vector and �̄i contains no more than n+1 non-zero components—vectors
in Rm. Let �̄i=��̄i

1��̄
i
2���̄

i
k� define

Ei= yj �1�j�k��̄i
j �=0!

We form a new tuple �̃i consisting of those column vectors ūi
j in �̄i whose

corresponding indices yj are in Ei. Then, it is easy to see that �x
i��̃i� is a solution

to problem (PDP�Ei�). �

LEMMA 3.2. Let Z= y1�y2��yk!⊂Y be any finite subset of index points.
Then, problem �PDP�Z�� is the dual (in Dorn’s form) of the following program:
Problem �P�Z��:

min
x

�1/2�xTQx+pTx (12)

st A�yi�x−b�yj��0� j=1�2��k (13)

A vector x̂∈Rn is the solution of problem �P�Z�� if and only if there exists some
�̂=��̂1��̂2���̂k�∈

∏k
j=1Y such that �x̂��̂� is a solution of problem �PDP�Z��.

Furthermore,

V �P�Z��=−V �PDP�Z��

Proof. The lemma is easy to check and we omit the details. �

In the following, we prove that if the sequence of the parameterization sets
Yi�i=1�2�� satisfies (10), then the solution sequence  xi! obtained from Algo-
rithm 1 converges to the solution of the problem (P), as shown in the following
theorem.

THEOREM 3.1. If �10� is satisfied, then the sequence  xi! obtained from Algo-
rithm 1 converges to the solution of problem �P�. Therefore, assuming that prob-
lem �PDPk� has only a finite number of local minima for each k, if 2 and N are
suitably chosen, the x∗ obtained in Step 6 is the optimal solution of problem �P�.
Proof. From Lemma 3.2, we see that xi is the solution of problem �P�Zi��.

According to Step 5, xi is the solution of problem �P�Ei��. On the other hand,
xi+1 is the solution of problem �P�Zi+1�� of which the constraint index set Zi+1
contains Ei as a subset. Thus it is easy to see that

f �xi��f �xi+1�� i=1�2�  (14)

The existence of a Slater point x0 for problem (P) shows that the sequence  f �xi�!
is bounded from above by f �x0�. Thus there exists some constant f

∗ such that

f �xi�→f ∗ �i→�� (15)
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The strict convexity of the quadratic cost f �x� and the boundedness of  f �xi�!
guarantee that the sequence  xi! is bounded. Let  xik

! be any chosen convergent
subsequence of  xi! such that

xik
→ x̄� �k→�� (16)

for some x̄∈Rn. We now show that x̄ is a feasible point of problem (P). In fact,
if x̄ is not a feasible point of problem (P), then there exists y0∈Y such that
gmax�y0�x̄�>0. Let

-= 1
2
gmax�y0�x̄� (17)

Since gmax�y�x� is continuous, we see that there exists 3>0 such that

�gmax�y�x�−gmax�y0�x̄��<-� for �y−y0�<3� �x− x̄�<3 (18)

As a result, we have

gmax�y�x��-� for �y−y0�<3� �x− x̄�<3 (19)

From (10) and (16), there exists an integer K such that for k�K, Yik
and xik

satisfy

max
z∈Y

min
y∈Yk

�z−y�<3/2 and �xik − x̄�<3/2

Especially, there exists yik
∈Yik

such that yik
and xik satisfy

�yik
−y0�<3/2� �xik − x̄�<3/2� for k�K (20)

Thus,

gmax�yik
�xik��-� for k�K (21)

It is clear from (21) and the definition of Zik+1 that yik
is in Zik+1 and hence

gmax�yik
�xik+1��0� for k�K (22)

Again, from the definitions of Zik+1 and Eik
, we see that xik and xik+1 are respec-

tively the solution and a feasible point of problem �P�Eik
��. Hence, from the fact

that the feasible set of problem �P�Eik
�� is convex and its objective function is

strictly convex, f �x� is strictly monotone along the segment connecting xik and
xik+1. Particularly, we have

f �xik�<f��xik +xik+1�/2�<f�xik+1� (23)
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Since  yik
! is contained in the compact set Y , it has a converging subsequence.

Without loss of generality, we suppose  yik
! itself converges to y′ ∈Y . At the same

time, we can further suppose that  xik+1! converges to some limit x̂. Letting k→�
in (22) and (23), we obtain

gmax�y
′�x̂��0 (24)

and

f �x̄��f ��x̄+ x̂�/2��f �x̂� (25)

From (24), it follows that

�gmax�y′�x̂�−gmax�y0�x̄���gmax�y0�x̄�−gmax�y
′�x̂��2- (26)

According to (20), we have �y′− ȳ��3/2. Hence, (18) shows that

�x̂− x̄��3 (27)

From (15), we have

f �x̄�=f �x̂� (28)

Now we see that (25), (27) and (28) contradict the fact that f �x� is strictly convex.
Therefore, x̄ is feasible to problem (P).
Next, we show that the whole sequence  xi! converges to the solution x∗ of

problem (p). Suppose  xi! does not converge. Then there are two subsequences
 xik! and  xjk! converging to x′ and x′′, respectively, where x′ �=x′′. Then both
x′ and x′′ are feasible to problem (P) as we proved above. The point �x′+x′′�/2
is feasible to problem (P) and hence feasible to problem �P�Zik

�� for all k�1.
Therefore,

f ��x′+x′′�/2�<�f �x′�+f �x′′��/2=f ∗

Since f �xik�→f ∗ as k→�, we have, for sufficiently large k,

f ��x′+x′′�/2�<f�xik�

This contradicts to the fact that xik is the solution of problem �P�Zik
��. Therefore,

 xi! converges to x∗. It is clear that x∗ is the solution of problem (P).
Finally, if 2 is sufficiently small and if N is sufficiently large, the approximation

solution xi found at the termination of the iteration in Step 5 will be so close to the
primal solution that the objective value of problem �PDPk� at �x

i��i�$i� is smaller
than the second smallest local minimum value of problem �PDPk�. Therefore, the
final local search will find the global solution. The proof is complete. �
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4. Numerical Example

The two numerical examples given in [9] were solved using the new algorithm
of this paper. The same numerical results as those of [9] were obtained with
much less computing effort. The new algorithm is also successfully applied to a
practical filter design problem with 40 decision variables, two infinite constraints,
and a two dimensional index set. That example will be presented in a separate
paper. Here we present a new example with two dimensional index set.

EXAMPLE 1. Consider the one-sided L2 approximation of the exponential func-
tion e1−y1−y2 on /0�10×/0�10 by quadratic (including linear) functions of variables
y1 and y2:

min
x

∫ ∫
Y
/x1y

2
1+x2y1y2+x3y

2
2+x4y1+x5y2+x6−e1−y1−y202dxdy

st y21x1+y1y2x2+y22x3+y1x4+y2x5+x6�e
1−y1−y2�

for �y1�y2�∈ /0�10×/0�10�

In other words, the problem is to best approximate the function e1−y1−y2 from
below by polynomials in y1�y2 of order not exceeding 2. The problem can be
transformed into the standard quadratic form:

min
x

1
2
xTQx+pTx

s.t. A�y�x�b�y� for all y=�y1�y2�∈Y �

where

x= /x1�x2�x3�x4�x5�x60
T �

Q=2
∫ ∫

Y
AT �y1�y2�A�y1�y2�dy1dy2

=




2/5 1/4 2/9 1/2 1/3 2/3
1/4 2/9 1/4 1/3 1/3 1/2
2/9 1/4 2/5 1/3 1/2 2/3
1/2 1/3 1/3 2/3 1/2 1
1/3 1/3 1/2 1/2 2/3 1
2/3 1/2 2/3 1 1 2



�

p=−2
∫ ∫

Y
AT �y1�y2�e

1−y1−y2dy1dy2�

≈−/05519217 037959918 055192174

090808143 090808143 2172322540T �

A�y�= /y21�y1y2�y
2
2�y1�y2�10�

b�y�=e1−y1−y2�
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Table 1. Numerical results for Example 1

n 6
m 1
s 2
( 1.0e-3
N 4

Number of iterations 6
for approx. solution

Number of initial 2
index points

Approx. sol. (0.45800751 0.90296818 0.44626535
−1.97961484 −1.97113439 2.51138762)

Approx. index points (1.000000, 1.000000) (0.062500, 0.687500) (0.437500, 0.312500)
(0.468750, 0.218750) (0.531250, 0.156250)

Approx. measure at 0.010801 0.009818 0.010644 0.010005 0.004695
each index point

Approx. obj. value 1.38018

Optimal sol. 0.45797897 0.90297594 0.44632314
−1.97963318 −1.97108836 2.51138681

Optimal active (1.000000, 1.000000) (0.061988, 0.687005) (0.437095, 0.312078)
index points (0.469177, 0.219176) (0.531462, 0.156459)

Optimal measure at 0.010791 0.009787 0.010602 0.010016 0.004718
each index point

Optimal objective 1.380068

and

Y = /0�10×/0�10

The numerical solutions obtained by the present algorithm are shown in Table 1.
We note that in the actual computation, the vector p is rounded up to 8 digits.

5. Comments

In this paper, we developed an adaptive algorithm for strictly convex quadratic
programming problems with multiple linear infinite constraints based on the
dual parameterization technique. An obvious advantage of the algorithm is that
in each iteration, only no more than n+2 index points are chosen to form
the parameterized dual problem. Hence, it is only required to solve a standard
quadratic program of dimension not exceeding n+�n+2�m with n linear equality
constraints. At the termination of the iteration, a local minimization problem of
dimension no higher than n+�n+2��m+s� is to be solved, where n, m and
s are respectively the dimension of the primal problem, the number of infinite
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constraints and the dimension of the index space. Convergence result and its
proof are given. In contrast to other algorithms, the algorithm in this paper is
capable of finding the exact solution rather than only an approximate solution.
Two existing examples are solved by the algorithm and the numerical results
show that the algorithm is efficient in computing the solution.
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